

節能環保新設計

陳克仁

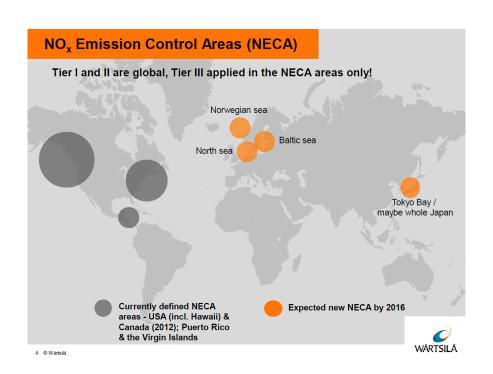
110-10-29

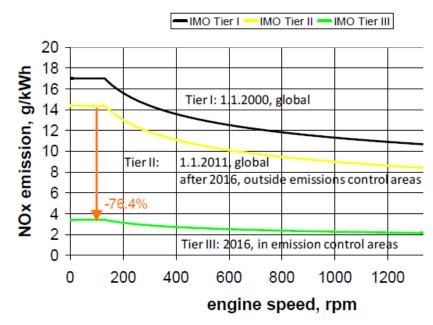
節能環保新設計

- > 廢氣排放標準
 - Tier III (NOx排放標準)方案
 - SOx排放標準與方案
 - 雙燃料DF引擎介紹
- ➤ EEDI規定
- 户節能設計
 - 廢熱回收
 - 軸發電機
 - 變頻運用

廢氣排放標準-滿足NOx & SOx排放方案

- ▶ 因應Tier III對NOx、PM及SOx的嚴格排放標準,下 列的解決方案組合。
- 低硫燃料 (MGO) + 觸媒降低法(SCR)
- 低硫燃料 MGO + 排氣循環法EGR
- 洗滌器(Scrubber) + SCR
- 洗滌器Scrubber + EGR




廢氣排放標準-滿足NOx & SOx排放方案

- 雙燃料引擎(Dual Fuel engine)-WINGD雙燃料引擎 (10bar以下的低壓LNG注氣系統),當燃料由重油 切換到LNG燃料,不需加排煙後處理設備即可滿足Tier III的排放標準
- MAN的二衝程雙燃料引擎為高壓(300bar)LNG注氣系統,需要300bar加壓泵,但僅能滿足Tier III的排放標準,需再加SCR才能滿足Tier III的排放標準。
- Wartsila四衝程雙燃料引擎早已經符合Tier III要求 ,廣泛的應用在LNG船、海洋工程船上

廢氣排放標準-NOx排放標準

降低NOx排放技術-SCR or EGR

NOx Tier III compliance options

- 1. SELECTIVE CATALYTIC REDUCTION (SCR)
 - MEPC.217(63) Certification of Marine Diesel Engines fitted with Selective Catalytic Reduction Systems under the NOx Technical Code 2008
 - MEPC.198(62) 2011 Guidelines addressing additional aspects to the NO_x Technical Code 2008 with regard to particular requirements related to marine diesel engines fitted with SCR
- 2. EXHAUST GAS RECIRCULATION (EGR) (2-STROKE)
- 3. DUAL-FUEL (4 STROKE) ENGINES (6-18MW)
- 4. DUAL-FUEL (2 STROKE) ENGINES (GAS MODE + WHR + EGR)
- 5. PURE GAS ENGINES (1.5MW to 9MW)*

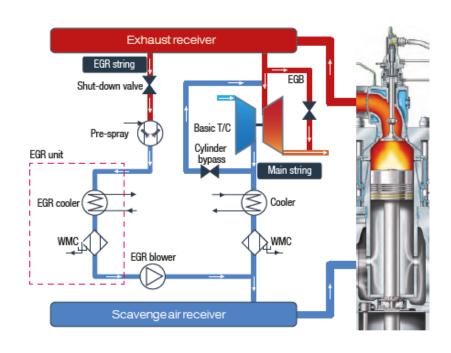
Fig. 1.02: Two-way approach for Tier III engine - EGR and SCR solutions

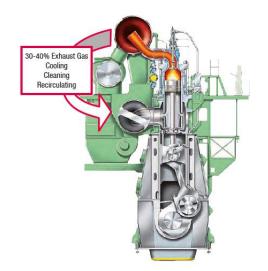
Bypass matching - 45 ≤ Bore ≤ 70							
Tier II mode			Tier III mode				
MCR	EGR	CBV	EGB	EGR	CBV	EGB	
100							
75					Open		
65	Closed	Closed	Open	Open	Ореп	Closed	
50							

Bypass Matching - Bore ≤ 40

	Tier II mode			Tier III mode			
MCR	EGR	CBV	EGB	EGR	CBV	EGB	
100	Open		Closed				
90	Open						
75		Closed		Open	Open	Closed	
65	Closed		Open				
50							
25					Closed		

Table 1.05: Control valve operation




Fig. 1.04: EGR process diagram. Bypass matching

TC cut-out matching - Bore ≥ 80

	Tier II mode		Tier II mode – TC cut-out			Tier III mode			
MCR	EGR	CBV	T/C	EGR	CBV	T/C	EGR	CBV	T/C
100				Not appli	cable			Closed	
75				140t appli	Cable		Open		
65	Closed	Closed	Cut in					Partly Open	Cut out
50				Closed	Closed	Cut out		Open	
25								Closed	

Table 1.07: Control valve operation

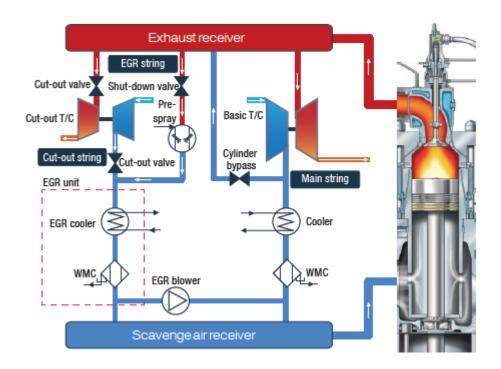


Fig. 1.03: Principle of EGR

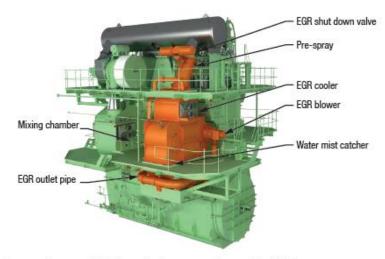


Fig. 1.10: Integrated EGR layout for bypass matching - 6S60ME-C8.2

- MAN建議針對35~70缸徑引擎,採用By-Pass EGR;針對 80~95缸徑引擎,採用T/C cut out EGR。
- EcoEGR是新引擎的調校法,在Tier III操作模式,約有 35%~45%排煙經過冷卻清潔循環,進入掃氣系統,可以滿 足Tier III排放需求,但在Tier II操作模式,僅有10%~15%排 煙經過冷卻清潔循環,進入掃氣系統,SFOC可以最佳化, 得到較佳的比燃油消耗率,EcoEGR投資約2年半可以回收, MAN估算EcoEGR安裝成本與HP SCR接近。
- 截至107年10月,MAN已經有121部EGR引擎訂單,其中8 部引擎已經正式營運中。

0

- 觸媒降低法SCR/(Selected Catalyst Reduction)
- SCR系統透過泵浦,將40%的尿素溶解液注入排煙管上的SCR主反應器內,當尿素蒸發分解成HNCO、NH3及CO2,將排煙中的NO及NO2透過觸媒(二氧化鈦titanium dioxide)與NH3反應後,分解成氮氣(N2)及水(HO2),為達到足夠的反應速率及避免積垢,最佳操作溫度約300~450℃,視燃油含硫量而定。

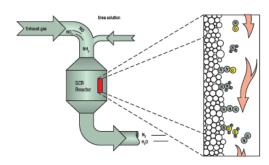
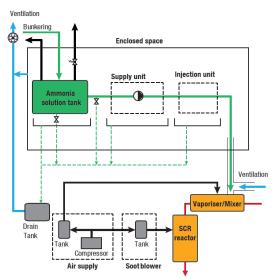



Fig. 1.34: The SCR system

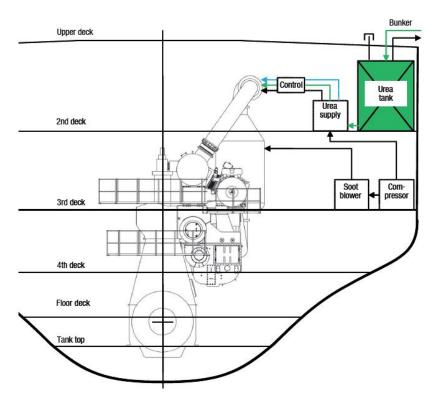


Fig. 1.48: Example of an SCR arrangement in the engine room

Fig. 1.47: Example of supply system for aqueous ammonia

• SCR觸媒反應器安裝在排煙管上的位置大不相同,SCR觸媒反應器安裝在排煙管上(LPSCR,詳如右圖),SCR觸媒反應器與機器本體安裝在一起(HPSCR,詳如左圖),

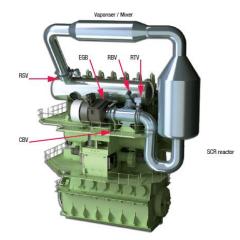


Fig. 1.41: Layout of a high-pressure SCR system, as supplied by Hitachi Zosen

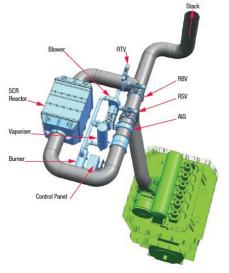
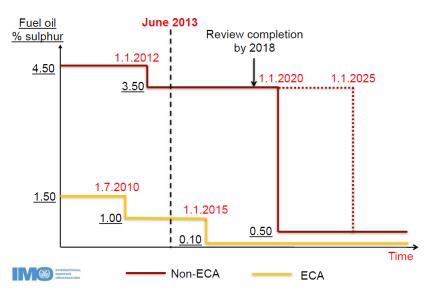


Fig. 1.42: Layout of a low-pressure SCR system, as supplied by Doosan

- 目前, 廠家也全力發展大缸徑主機的SCR技術, 降低SCR觸媒反應器的尺寸, 以降低成本及對機艙佈置的衝擊。
- HP SCR (High Pressure Selected Catalytic Reduction)
 - :此技術適用含硫量0.1%S~3.5%S的燃油。
- LP SCR (High Pressure Selected Catalytic Reduction): 此技術適用最大含硫量0.1%S的燃油
- 截至107年10月,MAN已經有253部2行程主機引擎HP SCR & LP SCR引擎訂單,其中20部引擎已經正式營運中。



廢氣排放標準-SOx排放標準

ECA compliance - SOx control

- A. Use compliant fuel oil
- B. Use equivalent e.g., EGCS
- C. Use alternative fuels
 - Gas dual fuel or gas only
 - biodiesel/methanol
- D. Onshore power supply (MEPC.1/Circ.794)

Regulation 14 Sulphur oxides and particulate matter (SOx & PM)

- 因應SOx排放標準要求,目前大部份海運公司採用含硫量0.1%以下的MGO/MDO燃料,當船隻航行到排放管制區,將燃料由重燃油切換到MGO,此種方法較為簡單,但MGO較重燃油昂貴,隨著船隻航行排煙管制區的時間愈久,油價上漲,成本愈高,此時,採用重燃油為燃料搭配排煙洗滌器脫硫裝置的作法,和MGO燃料比較,營運成本相對便宜。
- 排煙洗滌器脫硫有open loop (Sea water mode)
 Close loop (Fresh water mode)以及hybrid 系

16

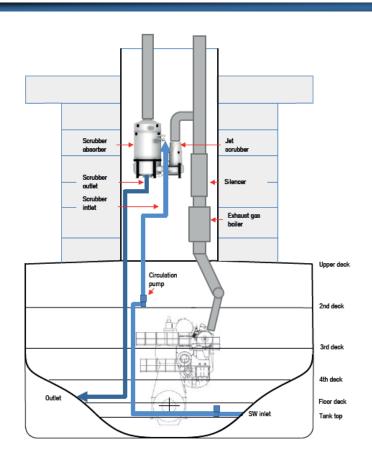


Fig. 2.12: Schematic arrangement of an open loop SO_x scrubber system (SW)

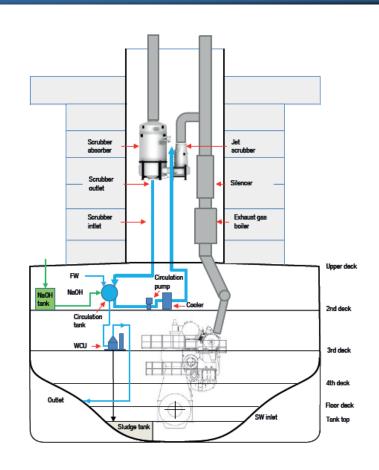
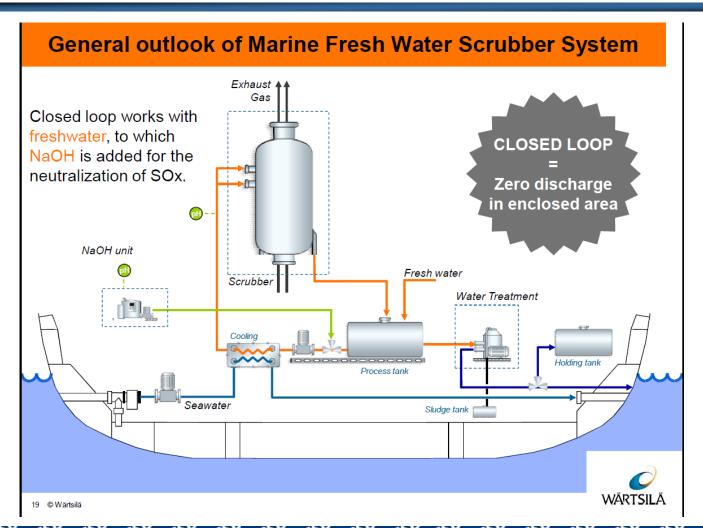


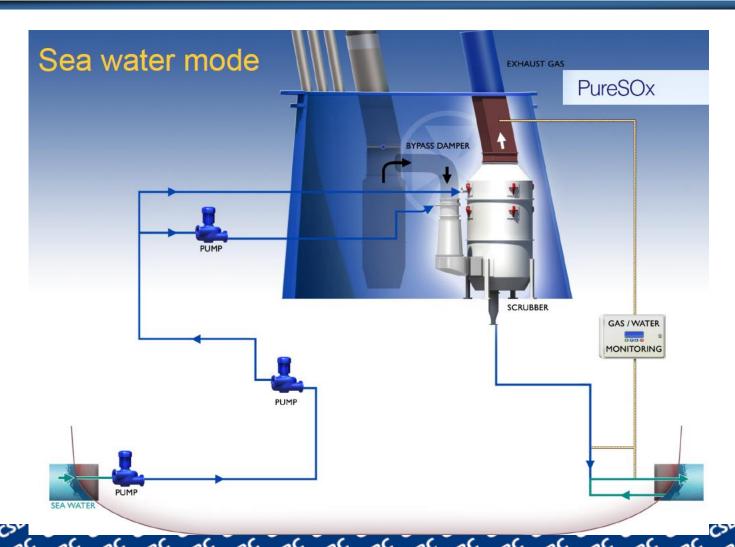
Fig. 2.13: Schematic arrangement of a closed loop SO, scrubber system (FW)



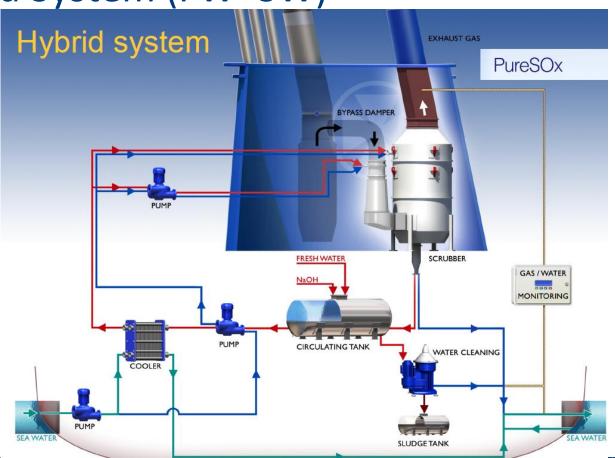
Close loop (淡水模式)

洗滌器原理係將50%氫氧化鈉溶液自動加入洗滌水循環系統,以維持循環過程的PH值濃度,經由循環泵浦將處理櫃(process tank)內的洗滌水打到海水熱交換器降溫後,再打回洗滌器上方及中間,經噴嘴注入排煙中,排煙由洗滌器底部進入,由頂部排出,洗滌水會吸收排煙中的硫化物、熱量以及其他物質排放物,落入洗滌器底部的洗滌水再回處理櫃(process tank)。

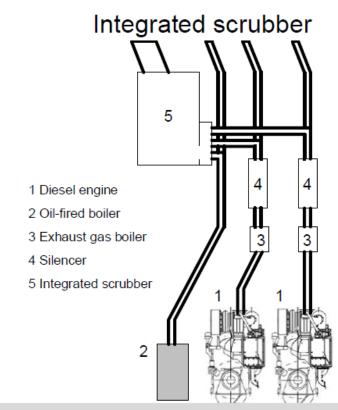
在此密閉迴路中,因水分的蒸發或累積雜質濃度過高而排放掉,需要隨時補充淡水,此為淡水洗滌器系統。



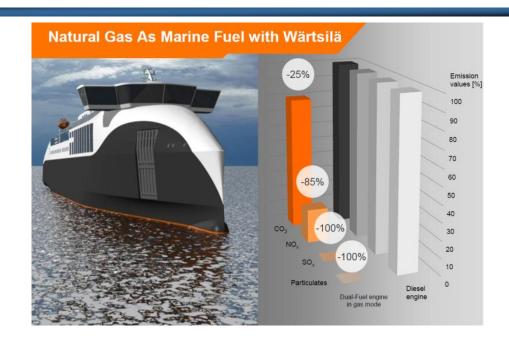
- Open loop (海水模式)
- 為減少淡水消耗量及簡化系統以節省成本,推出新式的海水洗滌器系統,將海水經由洗滌器供應泵浦直接打入洗滌器內頂部、中間及排煙導管入口,經噴嘴注入排煙內,而排煙由導管上部進入往下走,從洗滌器側面進入,再經洗滌器頂部排出,洗滌水會吸收排煙中的硫化物、熱量以及其他物質排放物,落入洗滌器底部的洗滌水再回到除氣櫃(de-aeration tank),處理後的水質符合排放標準後,直接排出船外。

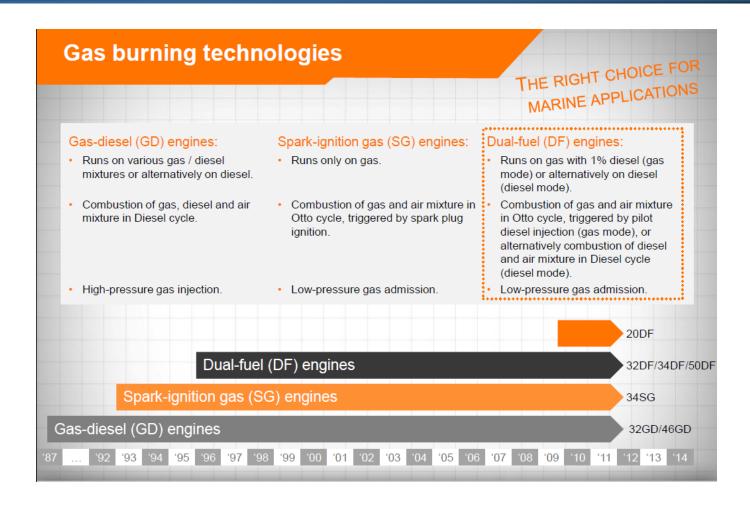


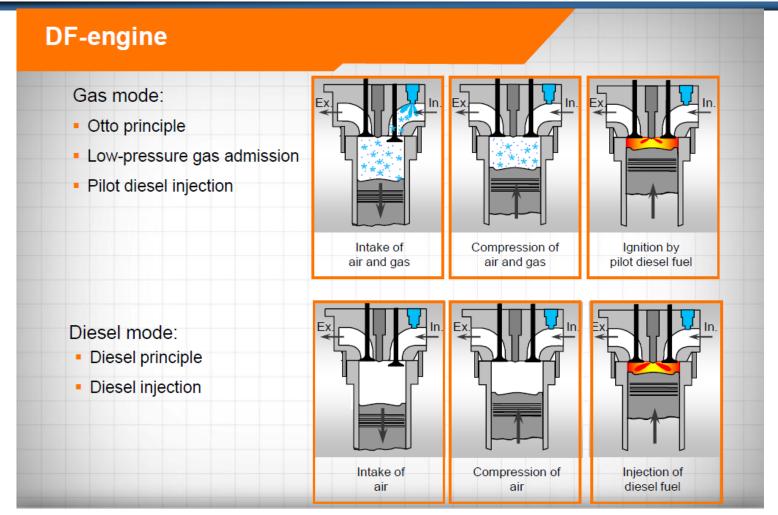
21

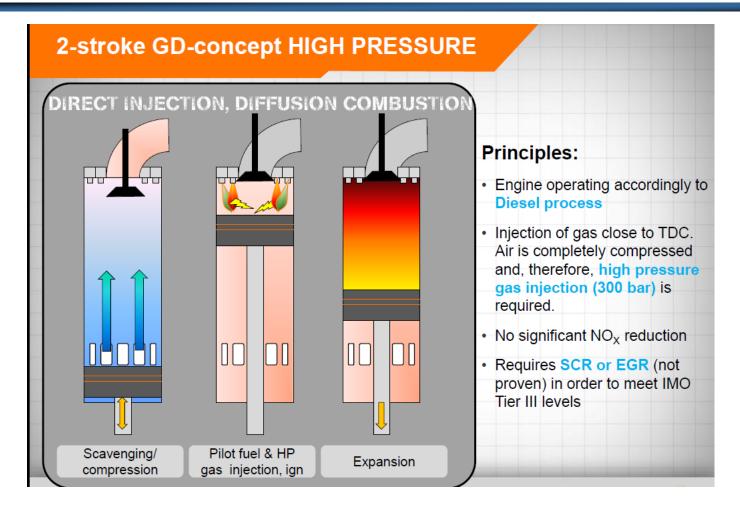


Hybrid System (FW+SW)

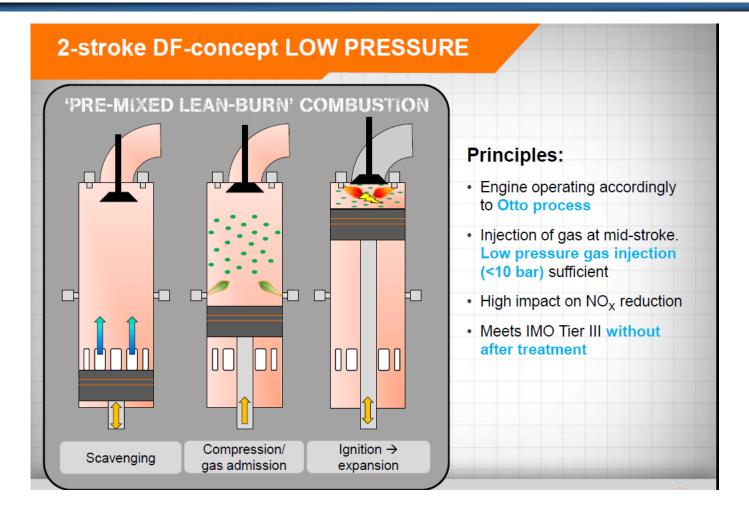

整合式洗滌器(integrated scrubber)是針對多部引擎 (含主機及多部電機)及輔 鍋爐排煙佈置,每一根排 煙管上加裝旁通管及擋板, 將所有旁通管插到旁通主 管,連接到洗滌器。當船 隻航行到排放管制區時, 旁通道擋板開啟,每部引 擎或輔鍋爐的主煙道擋板 關閉。


- Mainly for multi-engine ships
- Oil-fired boilers can be connected

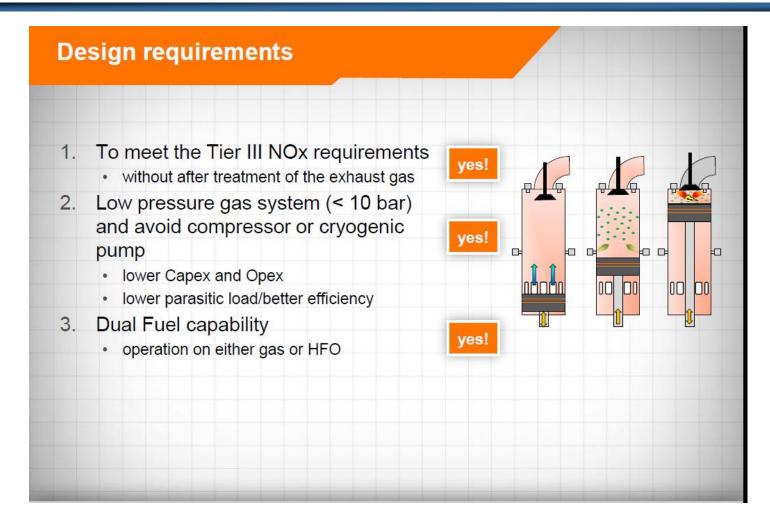

 Wartsila DF引擎使用 天然氣,相對於重 燃油,其排煙不含 硫化物與懸浮物、 氮化物與懸浮物、 氮化物大幅減少85% ,二氧化碳降低25%

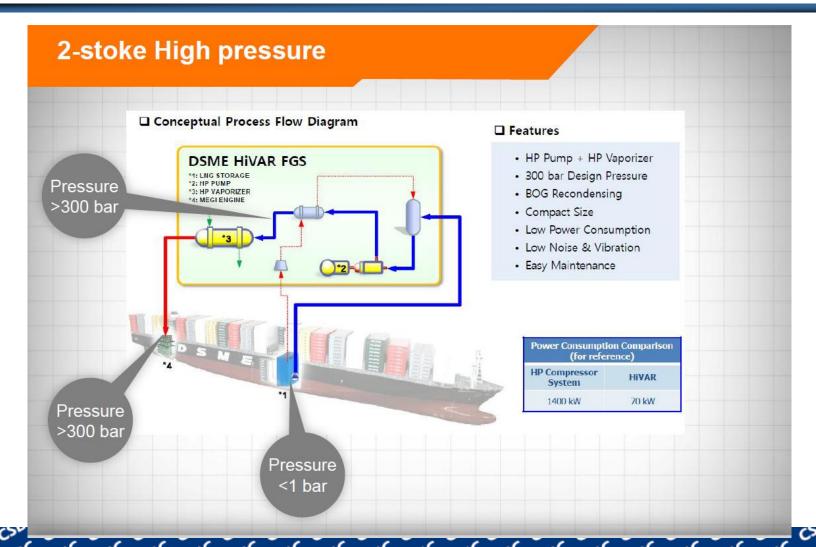


Technology comparison


Technology in gas mode	Competitor	Wärtsilä Product	
Spark ignited engine (Otto)	Rolls-Royce Bergen C25:33 and C35:40	W34SG and W50SG, not for propulsion applications.	
Lean burn, low pressure, DF engine (Otto/Diesel)	MAN 51/60DF	W20DF, W34DF, W50DF Wärtislä 2-S RT-flex50	
High pressure gas injection (Diesel)	MAN ME G-I	W32GD (and W46GD) 4-stroke engine, not for marine applications.	

Wärtsilä promotes the DF technology for marine use.





MAN 5G70ME-C9.5-GI與WinGD 5X72DF的比較

	MAN-GI	WinGD DF
循環	Diesel循環	Otto 循環
LNG進氣壓力	300 bar	10 bar
SFOC/SGC	較佳	較差
Pilot oil (DO)消耗	較高	較低
Methane slip / GHC	較佳	較差
FGSS -高壓LNG pump	需要	不需要
EGR	需要	不需要
水質處理設備	需要	不需要
考慮EGR等額外電力 消耗	需要	不需要
符合Tier III排氣標準	MAN GI + HP LNG + EGR +水質處理設備	WinGD DF
初期成本	較高	較低

MAN 5G70ME-C9.5-GI與WinGD 5X72DF的比較

根據上述比較,MAN-GI引擎技術改善的重點放在整合相關輔助設備,朝降低初期成本方向,而WinGD DF引擎技術改善的重點朝提高MEP,提高輸出馬力與降低SFOC/SGC方向,經過這幾年技術改善,MAN-GI引擎系統得初期成本有顯著地降低。

節能設計-廢熱回收

- > 廢熱回收
 - 淡水製造機 (FW Generator)
 - 廢氣節熱器 (EGE)
 - WHR (Waste Heat Recovery)

節能設計-廢熱回收-MAN範例

Power Turbine Stand Alone

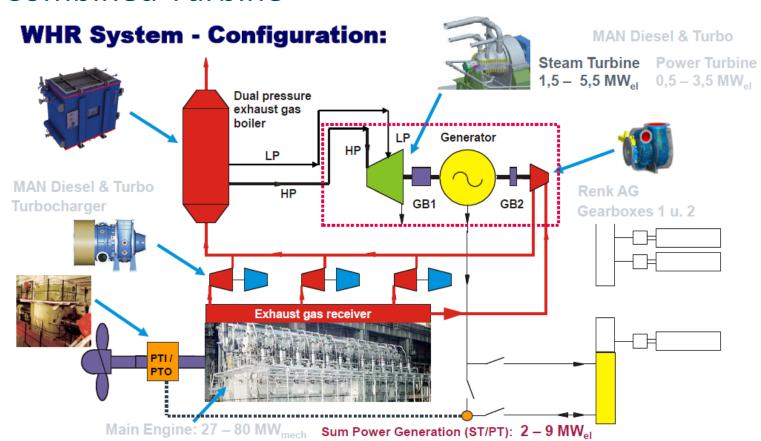
PTG – Power Turbine Generator

Steam Turbine Stand Alone

STG – Steam turbine generator

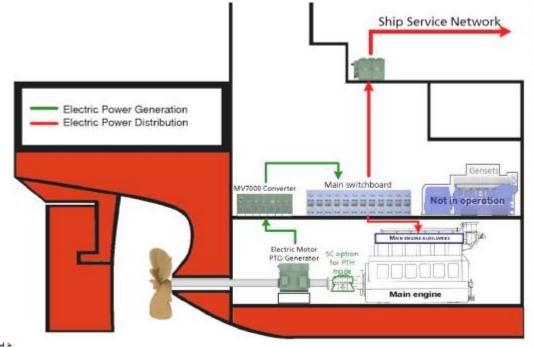
Combined Turbines

Steam turbine - Power turbine



節能設計-廢熱回收-MAN範例

Combined Turbine


節能設計-軸發電機

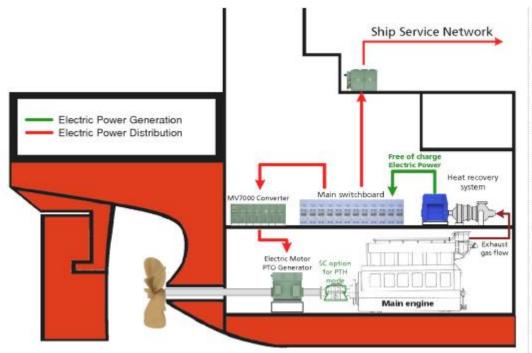
- > 軸發電機
 - PTO
 - PTI
 - PTH

節能設計-軸發電機(GE Energy範例)

PTO: POWER TAKE OUT (ELECTRIC POWER GENERATION MODE)

Main advantages:

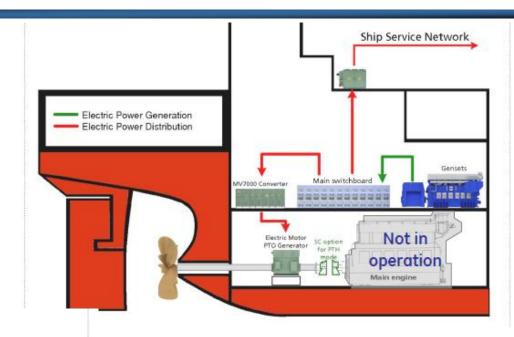
- o Economic electric power generation:
 - Redundancy of electric power sources (Electric power is supplied by PTO generators and generators of the Main gensets)
 - Independence of main engine with regard to gensets (no need of gensets to supply main engine auxiliaries)
- Improved Genset integration:
 - . Less gensets needed onboard (a part of electric power generation comes from PTO generators)
 - Less maintenance on gensets (Gensets are not used during free sailing)
 - Less noise, vibrations and losses in engine control room (gensets are not used during free sailing)



節能設計一軸發電機(GE Energy範例)

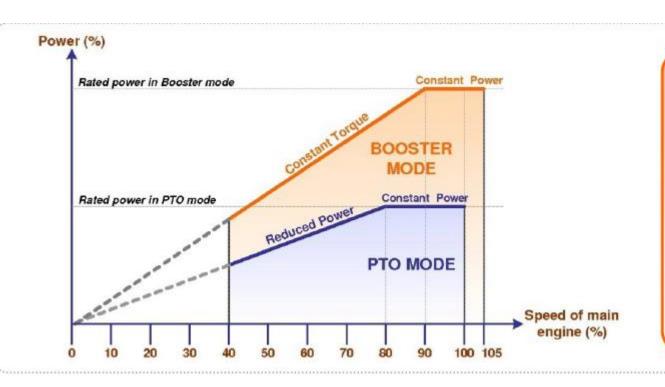
PTI: POWER TAKE IN (BOOSTER MODE)

Main advantages:


- Free of charge electric power:
 - Increased propulsion power: for shipbuilding of new heavy tankers, power is not sufficient, in order to keep only one shaft line. Electric Booster is the simplest solution to maintain competitive operational vessel speed.
 - For the same vessel speed, main engine can be smaller: the global thrust power is supplied by main
 engine and PTI electric motor.
 - For the same main engine, vessel has a better overall efficiency, represented by an increase of free sailing speed.
 - Allows fuel cost savings

節能設計-軸發電機(GE Energy範例)

PTH: POWER TAKE HOME (EMERGENCY MODE)


Main advantages:

- Fully redundant propulsion system:
 - Fully independent propulsion system in case of main engine failures: in case of emergency, vessels
 fitted with PTH drive are able to maintain maneuverability and reach terminal harbor.
 - Fully compliant with redundancy class specified by classification societies for the minimization of cargo loss which can lead to ecological disasters.
 - Electric propulsion is available in short order: vessels can start quickly in case of emergency.
- Economical benefits:
 - Main propulsion system only used during free sailing: With PTH drive, main engine are only used during optimum load conditions so less engine maintenance is needed.
 - Ship-owner can benefit of electrical propulsion advantages during slow speed maneuvers: During harbor maneuvers and slow speed transit, electric propulsion can be used. Electric propulsion main advantages are:
 - Fuel savings (better overall efficiency)
 - Environmental friendliness (fully compliant with harbor regulations)

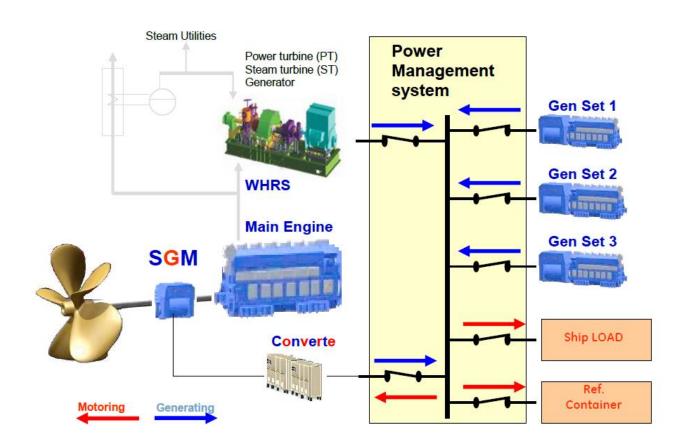
41

節能設計一軸發電機(GE Energy範例)

EXAMPLE:

For BOOSTER mode:

- Constant torque between 40 & 90% of the nominal main engine speed
- Constant power between 90 & 105% of the nominal main engine speed


For PTO mode:

- Constant power between 80 & 100% of the nominal main engine speed
- Reduced power between 40 & 80% of the nominal main engine speed

節能設計一軸發電機(GE Energy範例)

 WASTE HEAT RECOVERY / PTI & PTO SYSTEM MONITORING FUNCTION

節能設計-變頻運用

- > 變頻技術使用
- 中央冷卻水系統(海水泵+中央冷卻水泵)
- 機艙與貨艙通風

Q&A